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Introduction   

 one of the most important problems in modern technology: converting and 
efficiently storing electrical energy  

 solution: storing electrons in the form of an abundant element, for instance N-H 
bonds of  ammonia 

 

 

 

 

 

 

 problems: high capital costs, low moderate efficiency of current production 
methods 
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 Motivation   

 ammonia is difficult to produce on an 
industrial scale (high pressure, high 
temperature, catalysts required: Fe and 
Ru) 

Figure: Nitrogenase - enzyme used by some 
organisms to fix atmospheric nitrogen 

mild conditions  
N2 reduction in biological systems 

extreme conditions  
N2 reduction in Haber-Bosh process 
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Electro-reduction of nitrogen    

 ammonia can be obtained by electro-reduction of nitrogen 

                                        N2 + 6e- + 6H+ → 2NH3 

  protons are supplied from electro-oxidation of hydrogen or water  

 

 challenges: development, characterization and optimization of new 
electrocatalyists for ammonia electrosythesis and stable anhydrous proton 
conducting electrolytes 

                                  

Marnellos et al. Science 282 (5386) 98-100 

Holbrook and Ganley, US patent 7811442 (2010): 
electrochemical synthesis of ammonia using high 
temperature proton conductors at atmospheric 
pressures 
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 early transition metal nitrides - possible replacements for platinum-group 
metal catalysts - demonstrated catalytic activity for isomerisation, 
dehydrogenation, hydrogenation, water gas shift and amination reactions with 
competitive rates 
 
 molybdenum nitride  

 Structure of molybdenum nitride (i) tetragonal  β-Mo16N7, 
 (ii) hexagonal δ-MoN, and (iii) cubic γ-Mo2N 

Ammonia synthesis on MoN “foam” 
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 early transition metal nitrides - possible replacements for platinum-group 
metal catalysts - demonstrated catalytic activity for isomerisation, 
dehydrogenation, hydrogenation, water gas shift and amination reactions with 
competitive rates 
 
 molybdenum nitride  - high surface area films synthesized at LANL 

       Field emission scanning electron microscope (FESEM) images  

Ammonia synthesis on MoN “foam” 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Synergy of Inelastic Neutron Scattering and Computation: 
Ammonia synthesis on MoN “foam” 

INS Experiments 
observe frequencies for 
intermediates 

Computational Studies 
calculate frequencies for  
intermediates 

 

extract maximum amount of 
information from experiment: 
 
Identities of intermediates,  
reaction path ? 

 

determine model of surface 
active sites (e.g. defects) 
intermediates 
reaction path 
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 most useful for measurements requiring high sensitivity; for example, very 
dilute systems or molecules adsorbed on surfaces such as in catalysts 

Inelastic neutron scattering experiment   

The Filter Difference Spectrometer (FDS) at LANL  

 used for molecular vibrational spectroscopy by inelastic neutron scattering 
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Why Neutrons ? 

Light 
atomic scattering lengths based on atomic number (electrons) 
Neutrons 
scattering cross-section is a complex function of nuclear properties –hydrogen   

very sensitive 
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vibrational spectra measured on FDS   

10 K 

600 K 

973 K 

Figure: INS spectra of reactive species on MoN 

 < 1g sample of catalyst 
adsorb in-situ H2, then add N2 
 
 heat stepwise to increasing T 
 
 collect INS spectrum at each 
step 
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γ-Mo2N – rock salt structure with 50% less nitrogen atoms 

 model the surface 

 model the reaction on the surface – identify the intermediates 

 model the INS spectra – compare with the experiment 

molybdenum nitride  
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modeling active sites   

(100/010) (001) (110) 

(111) (111) + defects 
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different surfaces – very different reactivity: (001) does NOT adsorb H2,  (101) and 
(111) + defects dissociates H2 

molecular chemisorption (Kubas dihydrogen complex) 

d(Mo-H2) = 1.86 Å  
d(H-H) = 0.85 Å (activated H-H bond) 
 

reactivity of γ-Mo2N  
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reactivity of γ-Mo2N  
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double differential cross section 

 intensities calculated from DFT vibrational frequencies ωk and amplitudes Ck 
incoherent cross section for atom i 

momentum transfer 
experimental value: Q = k – k0  mean-square amplitude for atom i 
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reactivity of γ-Mo2N  
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10 K 

600 K 

973 K 

INS spectra assignment  

Figure: INS spectra of reactive species on MoN 

(10 K ) fcc H: 950, 1250 cm-1 
            bridging H: ~ 600, ~800, 1140 cm-1  
            terminal H:  ~700, 1645 cm-1         
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reactivity of γ-Mo2N: adsorption energies   
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reactivity of γ-Mo2N: energetics  
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 INS spectra: (111) with defects 
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INS spectra: (111) perfect surface  

 (111) perfect surface   (111) surface with defects  
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10 K 

600 K 

973 K 

assignment  

Figure: INS spectra of reactive species on MoN 

 
(973 K) NNHx species gone; mainly NHx species left.  
             ammonia phonon DOS states below 400 cm-1 
             Mo-(NH3) complex, incl. (NH3) torsion at 120 cm-1 !! 
             Peaks at ~ 600, 800, 900, 1150 and 1475 cm-1 
 

(298 K) Similar to (10 K), but fewer H species,  
             new peaks at ~500, 700 and 1550cm-1:  NNH 

(600 K) H species gone; peaks at 425, 510, 600, 660, 725, 
             1070, (weak: 1240, 1550), 1900 cm-1:  
             mainly NNH and NNH2;   
             plus more strong peaks below 400 cm-1: 

(10 K ) fcc H: 950, 1250 cm-1 
            bridging H: ~ 600, ~800, 1140 cm-1  
            terminal H:  ~700, 1645 cm-1         
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 different surfaces have very different reactivity towards N2, H2 and NNHx, NHx 
species  

 active sites: (111) defect sites with under-coordinated Mo 

 we have investigated the catalytic mechanism and the active sites of newly 
synthesized material using inelastic scattering of neutrons and  DFT calculations 

 synthesis of ammonia proceeds through the formation of both NNHx and NHx 
species  
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Introduction  

 one of the most important problems in modern technology: converting and efficiently storing electrical energy 

 solution: storing electrons in the form of an abundant element, for instance N-H bonds of  ammonia













 problems: high capital costs, low moderate efficiency of current production methods
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 Motivation  





 ammonia is difficult to produce on an industrial scale (high pressure, high temperature, catalysts required: Fe and Ru)

Figure: Nitrogenase - enzyme used by some organisms to fix atmospheric nitrogen

mild conditions 

N2 reduction in biological systems

extreme conditions 

N2 reduction in Haber-Bosh process
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Electro-reduction of nitrogen  



 ammonia can be obtained by electro-reduction of nitrogen

                                        N2 + 6e- + 6H+ → 2NH3

  protons are supplied from electro-oxidation of hydrogen or water 



 challenges: development, characterization and optimization of new electrocatalyists for ammonia electrosythesis and stable anhydrous proton conducting electrolytes

                                 

Marnellos et al. Science 282 (5386) 98-100

Holbrook and Ganley, US patent 7811442 (2010):

electrochemical synthesis of ammonia using high temperature proton conductors at atmospheric pressures
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 early transition metal nitrides - possible replacements for platinum-group metal catalysts - demonstrated catalytic activity for isomerisation, dehydrogenation, hydrogenation, water gas shift and amination reactions with competitive rates



 molybdenum nitride 







 Structure of molybdenum nitride (i) tetragonal  β-Mo16N7,

 (ii) hexagonal δ-MoN, and (iii) cubic γ-Mo2N

Ammonia synthesis on MoN “foam”
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 early transition metal nitrides - possible replacements for platinum-group metal catalysts - demonstrated catalytic activity for isomerisation, dehydrogenation, hydrogenation, water gas shift and amination reactions with competitive rates



 molybdenum nitride  - high surface area films synthesized at LANL



       Field emission scanning electron microscope (FESEM) images 

Ammonia synthesis on MoN “foam”
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Synergy of Inelastic Neutron Scattering and Computation:

Ammonia synthesis on MoN “foam”

INS Experiments

observe frequencies for intermediates

Computational Studies

calculate frequencies for 

intermediates





extract maximum amount of

information from experiment:



Identities of intermediates, 

reaction path ?



determine model of surface

active sites (e.g. defects)

intermediates

reaction path
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 most useful for measurements requiring high sensitivity; for example, very dilute systems or molecules adsorbed on surfaces such as in catalysts



Inelastic neutron scattering experiment  

The Filter Difference Spectrometer (FDS) at LANL 

 used for molecular vibrational spectroscopy by inelastic neutron scattering
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Why Neutrons ?

Light

atomic scattering lengths based on atomic number (electrons)

Neutrons

scattering cross-section is a complex function of nuclear properties –hydrogen   very sensitive
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vibrational spectra measured on FDS  



10 K

600 K

298 K

973 K

Figure: INS spectra of reactive species on MoN

 < 1g sample of catalyst

adsorb in-situ H2, then add N2



 heat stepwise to increasing T



 collect INS spectrum at each

step
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γ-Mo2N – rock salt structure with 50% less nitrogen atoms

 model the surface

 model the reaction on the surface – identify the intermediates

 model the INS spectra – compare with the experiment

molybdenum nitride 
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modeling active sites  







(100/010)

(001)

(110)

(111)

(111) + defects
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different surfaces – very different reactivity: (001) does NOT adsorb H2,  (101) and (111) + defects dissociates H2

molecular chemisorption (Kubas dihydrogen complex)

d(Mo-H2) = 1.86 Å 
d(H-H) = 0.85 Å (activated H-H bond)


reactivity of γ-Mo2N 
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reactivity of γ-Mo2N 







double differential cross section

 intensities calculated from DFT vibrational frequencies ωk and amplitudes Ck

incoherent cross section for atom i

momentum transfer

experimental value: Q = k – k0 

mean-square amplitude for atom i
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reactivity of γ-Mo2N 
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10 K

600 K

298 K

973 K



INS spectra assignment 

Figure: INS spectra of reactive species on MoN

(10 K ) fcc H: 950, 1250 cm-1

            bridging H: ~ 600, ~800, 1140 cm-1 

            terminal H:  ~700, 1645 cm-1	       
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reactivity of γ-Mo2N: adsorption energies  
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reactivity of γ-Mo2N: energetics 
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 INS spectra: (111) with defects
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INS spectra: (111) perfect surface 



 (111) perfect surface 

 (111) surface with defects 
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10 K

600 K

298 K

973 K



assignment 

Figure: INS spectra of reactive species on MoN



(973 K) NNHx species gone; mainly NHx species left. 

             ammonia phonon DOS states below 400 cm-1

             Mo-(NH3) complex, incl. (NH3) torsion at 120 cm-1 !!

             Peaks at ~ 600, 800, 900, 1150 and 1475 cm-1



(298 K) Similar to (10 K), but fewer H species, 

             new peaks at ~500, 700 and 1550cm-1:  NNH

(600 K) H species gone; peaks at 425, 510, 600, 660, 725,

             1070, (weak: 1240, 1550), 1900 cm-1: 

             mainly NNH and NNH2;  

             plus more strong peaks below 400 cm-1:

(10 K ) fcc H: 950, 1250 cm-1

            bridging H: ~ 600, ~800, 1140 cm-1 

            terminal H:  ~700, 1645 cm-1	       
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 different surfaces have very different reactivity towards N2, H2 and NNHx, NHx species 

 active sites: (111) defect sites with under-coordinated Mo

 we have investigated the catalytic mechanism and the active sites of newly synthesized material using inelastic scattering of neutrons and  DFT calculations

 synthesis of ammonia proceeds through the formation of both NNHx and NHx species 
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The conversion and efficient storage of electrical energy
ranks among the most critical problems for modern
technology and energy use in general. A potential new
means for energy storage may rest with the chemical
bonds of an abundant element, such as the N-H bonds of
liquid ammonia. This approach, however, requires the
development of molecular catalysts, which will reduce the
energy requirements needed for artificial nitrogen
fixation. Our newly synthesized, high surface Mo-N
material may be such a candidate catalyst for the
electroreduction of nitrogen into ammonia. We have
therefore undertaken a combined computational and in-
situ inelastic neutron scattering (INS) study to investigate
its catalytic properties.

The vibrational spectra of the reactants, intermediates and
products upon quenching the reaction between hydrogen
and nitrogen at several different temperatures were
obtained by INS, and interpreted on the basis of frequency
calculations from the electronic structure models of the
various species. Different types of active sites of this new
material were modeled in our calculations, and used to
study the binding of various species considered to be
intermediates in the synthesis of ammonia, namely H. N
and NH,, NNH,, x=1-3. We were able to demonstrate in
this manner that different surfaces structures of the Mo-N
material give rise to a large variation of chemical
reactivity for H, and N, and that defects are critical in
enhancing this activity. The vibrational frequencies for
the various surface bonded intermediate species provide
significant insights into the details of this reaction, as
comparison with the INS spectra shows, for example, the
prevalence of NNH, intermediate species.
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